# **Tabata Interval Exercise: Energy Expenditure** and Post-Exercise Responses Michele Olson, PhD, FACSM

# Scharff-Olson Kinesiology Lab, Auburn University Montgomery, Montgomery, AL

# Abstract

**PURPOSE**: Tabata training, named for its developer Dr. Izumi Tabata who studied this form of conditioning at the National Institute of Fitness and Sports in Tokyo, involves a movement or modality such as squat jumps, stair running or cycling done for 20 seconds at max effort with 10 seconds rest for 8 total cycles. The Tabata researches found that this protocol produced significant improves in VO<sub>2 max</sub> following a period of training. However, no published data are available regarding the energy cost of the Tabata method. The purpose of this study was to measure the energy cost of a Tabata protocol and determine the energy expenditure following a Tabata bout.

**METHODS**: 15 participants, 12 women and 3 men (mean age, 24.9 yr) who were physically active or involved in university athletics participated in the study and provided informed consent. The study protocol was as follows: Pre-exercise VO<sub>2</sub> was measured for 30 minutes (Parvomedics metabolic system) while the subjects rested in a supine position on an athletic training table. Subjects then completed a Tabata bout executing 8 cycles of body-weight squat jumps with max effort while being measured continuously for VO<sub>2</sub>. Following exercise, the subjects' VO<sub>2</sub> was further recorded as per the pre-exercise conditions.

**RESULTS**: Mean pre-exercise VO<sub>2</sub> was 3.7 ml·kg<sup>-1</sup>·min<sup>-1</sup>. For the Tabata bout VO<sub>2</sub> was 38.4 ml·kg<sup>-1</sup>·min<sup>-1</sup> with an average peak VO<sub>2</sub> of 48.2 ml kg<sup>-1</sup> min<sup>-1</sup> during various 20 second max effort periods. Mean peak RER recovery values were 1.54. At 10, 20 and 30 minutes postexercise, mean VO<sub>2</sub> was 12.5, 6.4 and 4.1 ml·kg<sup>.-1</sup>·min<sup>-1</sup>, respectively. All time-ordered post-exercise VO<sub>2</sub> values were significantly higher than pre-exercise (ANOVA, p. 0.05). Using the 5 kcal-min<sup>-1</sup> equivalent for every 1 L of O<sub>2</sub> consumed, kcal cost for the Tabata protocol was 13.4 kcal<sup>-1</sup>min<sup>-1</sup> (standardized to 70 kg wt). Additionally, the kcal expenditure incurred 30 minutes post exercise was double that for the 30 minute pre-exercise period: 80.5 kcals versus 39 kcals, respectively. **CONCLUSIONS:** This data shows that a bout of Tabata exercise using body-weight squat jumps produced a marked VO<sub>2</sub> equivalent to 11.0 METs and a VO<sub>2</sub> that had not fallen to pre-exercise 30 minutes post exercise. Thus, the intensity of Tabata's appears viable as an interval training method particularly for athletes and the higher-fit.

### Introduction

Various forms of interval training, sometimes referred to as high intensity interval training or HIIT, have become increasingly popular in both athletic conditioning and mainstream fitness arenas. Traditional HIIT protocols are generally comprised of "Effort" and "Recovery" ratios such as 1:3 where 15 seconds of all-out supramaximal exercise effort is followed by a recovery or rest interval three times the length of the effort period such as 45 seconds. Common HIIT modalities, particularly in athletic conditioning include running and sprinting, cycle ergometry and plyometrics.

In contrast, Dr. Izumi Tabata from the National Institute of Fitness and Sports in Tokyo, studied an "Effort-Recovery" protocol using cycle ergometers comprised of 20 seconds supramaximal effort (i.e. 170%) of VO<sub>2max</sub>) followed by 10 seconds of recovery. This form of interval training was found to elicit significant improvements in VO<sub>2max</sub> which were comparable to substantially longer training durations of steadystate sub-maximal exercise.

However, little is know about the energy cost of Tabata interval training including post-exercise oxygen uptake responses. Therefore, the purpose of this study was to measure the energy cost of the Tabata format using body weight squat jumps at an al-out effort and to also measure post exercise oxygen uptake responses for comparison to resting oxygen uptake.

# Methods

The subjects were 15 physically active women (n = 12) and men (n = 3) with a mean age, 24.9 yr. After receiving a detailed explanation of the investigation, the study participants were screened for health history and provided informed consent as prescribed by the American College of Sports Medicine and the Institutional Review Board for Human Subject Research at Auburn University Montgomery. During the experimental trials, the subjects reported to the exercise laboratory and were measured for height and weight. Height was measured to the nearest 0.5 cm and weight to the nearest 0.01 kg.

All of the subjects were instructed on the squat jump Tabata protocol and allowed to practice in the days preceding the trails when oxygen consumption was measured. A Parvomedics True-One open-circuit spirometry gas analysis system was used to determined oxygen uptake and the respiratory exchange ratio (RER). The gas analyzers were calibrated prior to each test with gases verified by gas chromatography.

#### The oxygen uptake protocol was comprised of three stages:

Pre-exercise VO<sub>2</sub> was measured for 30 minutes while the subjects rested in a supine position on an athletic training table. Subjects then completed a Tabata bout executing 8 cycles of body-weight squat jumps with maximal (all-out) effort while being measured continuously for  $VO_2$ . Following exercise, the subjects'  $VO_2$  was further recorded as (per the pre-exercise conditions) for 30 minutes.

Parvomedics Metabolic Cart – Pre Exercise Oxygen Consumption



Body Weight "TABATA" Squat Jumps



Means were calculated for each of the descriptive variables (see Table 1). Time-ordered VO<sub>2</sub> responses were compared with an ANOVA (p. 0.05) to detect any differences between pre, exercise, and post-exercise values. In addition, kilo-calorie expenditure was determined via a 5 kcal-min<sup>-1</sup> equivalent for every 1 L of O<sub>2</sub> consumed and is further reported based on a standardized body weight of 70 kg.

#### Table 1. Descriptive Characteristics of Subjects (mean)

Varia Age ( Heigh Weigl

All study participants completed the data collection trials successfully with no adverse events. The mean energy cost values ranged from 3.7 ml kg<sup>-1</sup> min<sup>-1</sup> during the 30 minute pre-exercise period to peak value of 48.2 ml·kg<sup>-1</sup> min<sup>-1</sup> during the Tabata protocol (see Table 2). At 30 minutes post exercise, the mean VO<sub>2</sub> was 4.1 ml·kg<sup>-1</sup>·min<sup>-1</sup> which was (still) significantly higher than the preexercise VO<sub>2</sub>. The mean peak RER value measured during the early postexercise period was 1.54.

Table 3 shows the caloric expenditure values. The mean per-minute energy cost was notably high at 13.4 kcal<sup>-1</sup> min<sup>-1</sup>. Thus, the total energy cost of the 4-minute "Tabata" bout was approximately 54 kcals. Further, the total energy expended during the 30 minute recovery was twice that of the energy expended during the 30 minute pre-exercise period yielding a gross energy cost of 134.1 kcals.

Pre-E> Tabata Peak Post-E Post-E Post-E

\*All VC than pre-exercise  $VO_2$  (p. 0.05)

Pre-Taba Post

\*Note. Total energy expenditure accumulated during post-exercise period was double pre-exercise period

# **Statistical Analysis**

| <u>ble</u> | <u>15 Subjects</u> |
|------------|--------------------|
| yr)        | 24.9               |
| nt (cm)    | 168.2              |
| ht (kg)    | 67.3               |

## Results

| Table 2. Time-Ordered VO <sub>2</sub> Values (mean)* |                                             |  |
|------------------------------------------------------|---------------------------------------------|--|
| kercise VO <sub>2</sub>                              | 3.7 ml·kg <sup>-1.</sup> min <sup>-1</sup>  |  |
| a VO <sub>2</sub>                                    | 38.4 ml·kg <sup>-1</sup> ·min <sup>-1</sup> |  |
| Fabata VO <sub>2</sub>                               | 48.2 ml·kg <sup>-1</sup> ·min <sup>-1</sup> |  |
| Exercise $VO_2$ 10 min.                              | 12.5 ml·kg <sup>-1</sup> ·min <sup>-1</sup> |  |
| Exercise $VO_2$ 20 min.                              | 6.4 ml·kg <sup>-1</sup> ·min <sup>-1</sup>  |  |
| Exercise VO <sub>2</sub> 30 min.                     | 4.1 ml·kg <sup>-1.</sup> min <sup>-1</sup>  |  |
| <i>D<sub>2</sub> values significantly greater</i>    |                                             |  |

#### Table 3. Kilocalorie Expenditure (mean)\*

| Exercise - 30 minutes     | 39.0 kcal <sup>-1</sup>                    |
|---------------------------|--------------------------------------------|
| ata Exercise - per minute | 13.4 kcal <sup>-1.</sup> min <sup>-1</sup> |
| t-Exercise - 30 minutes   | 80.5 kcal <sup>-1</sup>                    |
|                           |                                            |

The results of this study show that a bout of Tabata exercise using body-weight squat jumps produced a marked VO<sub>2</sub> equivalent to 11.0 METs, a mean kcal expenditure of 53.6, and a  $VO_2$  that had not fallen to pre-exercise 30 minutes post exercise. Thus, the intensity of a Tabata interval exercise bout using squat jumps appears viable as an interval training method particularly for athletes and the higher-fit.

Future research aimed at determining the energy cost of a Tabata protocol with additional exercise modalities such as sprinting or other plyometric maneuvers may also prove valuable. In addition, the time period required for oxygen uptake to reach preexercise levels following Tabata interval training has yet to be determined.

Tabata I, Nishimura K, Kouzaki M, et al. (1996). "Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO<sub>2</sub>max". *Med Sci Sports Exerc* **28** (10): 1327–30.

Note. The research published by Nishimura Tabata was conducted with speed skaters who performed supramaximal bouts of the 20 sec:10 sec interval protocol (with 8 repeats) using cycle ergometers.

This presentation was funded by the Department of Exercise Science Auburn University at Montgomery



# Conclusions

### Reference

